Fitting the Log Skew Normal to the Sum of Independent Lognormals Distribution

نویسندگان

  • Marwane Ben Hcine
  • Ridha Bouallegue
چکیده

Sums of lognormal random variables (RVs) occur in many important problems in wireless communications especially in interferences calculation. Several methods have been proposed to approximate the lognormal sum distribution. Most of them requires lengthy Monte Carlo simulations, or advanced slowly converging numerical integrations for curve fitting and parameters estimation. Recently, it has been shown that the log skew normal distribution can offer a tight approximation to the lognormal sum distributed RVs. We propose a simple and accurate method for fitting the log skew normal distribution to lognormal sum distribution. We use moments and tails slope matching technique to find optimal log skew normal distribution parameters. We compare our method with those in literature in terms of complexity and accuracy. We conclude that our method has same accuracy than other methods but more simple. To further validate our approach, we provide an example for outage probability calculation in lognormal shadowing environment based on log skew normal approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Approximation of the Sum of Lognormals by a Log Skew Normal Distribution

Several methods have been proposed to approximate the sum of lognormal RVs. However the accuracy of each method relies highly on the region of the resulting distribution being examined, and the individual lognormal parameters, i.e., mean and variance. There is no such method which can provide the needed accuracy for all cases. This paper propose a universal yet very simple approximation method ...

متن کامل

Highly Accurate Log Skew Normal Approximation to the Sum of Correlated Lognormals

Several methods have been proposed to approximate the sum of correlated lognormal RVs. However the accuracy of each method relies highly on the region of the resulting distribution being examined, and the individual lognormal parameters, i.e., mean and variance. There is no such method which can provide the needed accuracy for all cases. This paper propose a universal yet very simple approximat...

متن کامل

A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems

Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Skew-slash distribution and its application in topics regression

In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.02344  شماره 

صفحات  -

تاریخ انتشار 2014